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1 Density-dependent model

Let xh be the number of non-infected poultry and xs be the number of poultry infected with avian influenza.
The equations

dxh

dt
= b− (1− y)βxhxs − σxh (S1)

dxs

dt
= (1− y)βxhxs − vxs − σxs , (S2)

describe the circulation of influenza on a single farm, where b is the rate at which new eggs or young chicks
are brought onto the farm, v is disease-induced death rate (or virulence), (1 − y) is the contact parameter
among chickens or ducks (which can be controlled with infection control measures y by individual farmers),
β is the transmissibility of influenza in poultry via the faecal-oral route, and σ is the rate at which poultry
are sent to market.

This system has a stable endemic equilibrium where

x̂h =
v + σ

β(1− y)
and x̂s =

b

v + σ
− σ

β(1− y)
(S3)

so the equilibrium number of total poultry is

x̂ =
b

v + σ
+

v

β(1− y)
. (S4)
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The basic reproduction number is R0 = bβ(1 − y)/(σ(v + σ)), and when R0 < 1, the system settles to the
disease-free equilibrium (DFE) at

x̂h =
b

σ
and x̂s = 0 . (S5)

This ecological transition needs to be kept in mind as we proceed with the economic analysis below.

There is a diagnostic test with power θ and zero false positive rate, so that the numbers of ostensibly healthy
and ostensibly sick poultry, respectively, are

ŵh = x̂h + (1− θ)x̂s (S6)

ŵs = θx̂s . (S7)

The farmer receives the market price P for an ostensibly healthy chicken or duck and a reduced price κP
for an infected bird. We assume that farmers are small price-taking producers, and that their behavior does
not influence the overall market price P . The farmer controls the parameters b, σ, and y, and he wants to
maximize his profit

π = (ŵh + κŵs) σ P (σ−1) − r(b) − c(b, y) . (S8)

Price depends on σ since poultry are sold on a per-kilogram basis and they will have different weights
depending on when the farmer sends them to market. We assume a piecewise linear form for the price
function:

P (σ−1) =


P
(

σ−1−d
g

)
for d ≤ σ−1 ≤ g + d

P for σ−1 > g + d

0 for σ−1 < d.

(S9)

where d is the number of days it takes a chick (duckling) to grow into an adult chicken (duck), and g is the
number of days it takes a mature bird to grow to full size.

The cost of eggs or young chicks is r(b), and c(b, y) is the cost of infection control; c(b, 0) = 0, and c(b, y)
increases as y increases from 0 up to y0 = 1 − (σ(σ + v))/(bβ) which is the level of infection control that
makes R0 = 1. We assume for our analysis that r′ > 0 and r′′ > 0, and c(b, y) = aby where a is the per unit
cost of infection control.

The parameters θ and κ always appear in combination as (1 − κ)θ. Thus, without loss of generality we
assume that κ = 0.

1.1 Individual farmer optimization over σ

The farmer attempts to maximize (S8) at the steady state (S3). Let t = 1/σ; t denotes time to market.
Then,

∂π

∂t
=

P

g

(
tdv + θ(2d− t)

β(1− y)t3
+

b(1− θ)(1 + dv)

(tv + 1)2

)
(S10)

and
∂π

∂t

∣∣∣∣
t=d

> 0 . (S11)

For relevant parameters for poultry farming, we have

∂π

∂t

∣∣∣∣
t=d+g

> 0 , (S12)
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and this derivative can be negative only when d is unrealistically low, v is low, and θ is high. As θ and v will
typically be positively correlated in this system, these parameter conditions are highly restrictive for poultry
farming. These assumptions are relaxed and explored in section 3.

It can be shown that
∂2π

∂t2
=

p

g

(
2t(θ − dv)− 6dθ

β(1− y)t4
− 2bv(1− θ)(1 + dv)

(tv + 1)3

)
(S13)

which, again, is negative for parameter ranges relevant for poultry farms. The second derivative above can
be positive only when both

v < θ/d and t > 3d . (S14)

Assuming that (S13) is negative, we have

∂π

∂t

∣∣∣∣
t=d,θ=0

>
∂π

∂t

∣∣∣∣
t=d,θ=1

(S15)

when R0 > 1 at t = d. And,
∂π

∂t

∣∣∣∣
R0=1,θ=0

>
∂π

∂t

∣∣∣∣
R0=1,θ=1

(S16)

when R0 < 1 at t = d. Since profit decreases as θ increases, we obtain the curves shown in Figure 1A of the
main paper.

Thus, the farmer will optimize his profit by waiting until his chickens or ducks are fully grown (σ∗ = 1/(d+g))
before sending them to market. The above analysis holds for all values of b and y and we assume that
σ = 1/(d+ g) for the remainder of the analysis in this section.

1.2 Individual farmer optimization over b

We have
∂π

∂b
= (1− θ)P

σ

v + σ
− r′(b) − ay (S17)

and
∂2π

∂b2
= −r′′(b) < 0 . (S18)

which means that there will be a unique price-optimizing b∗ ∈ R, but not necessarily in the range where an
endemic equilibrium is supported, which is the assumption in both (S17) and (S18). If b∗ does correspond
to an endemic equilibrium, we have

∂b∗

∂y
< 0 ,

∂b∗

∂θ
< 0 , and

∂b∗

∂P
> 0 . (S19)

Let b0 = σ(σ + v)/(β(1− y)) be the b-value at which R0 = 1. Then,

∂π

∂b

∣∣∣∣
b0

= 0 (S20)

defines a threshold value θ̄b above which
∂π

∂b

∣∣∣∣
b0

< 0 , (S21)

meaning that the b∗ from (S17) places the system at its disease-free equilibrium. This threshold value is

θ̄b = 1 − (r′(b0) + ay) (v + σ)

σP
, (S22)
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which guarantees that θ̄b < 1. When θ < θ̄b, the optimal intermediate farm size b∗ puts the system at the
endemic equilibrium in equations (S3). When θ > θ̄b, the farmer chooses b0 as the optimal farm size, as
there is no economic benefit to choosing a procurement rate below b0.

Note that θ̄b depends on y, P , a, and the function r. θ̄b decreases with y and a, and increases with P .

1.3 Individual farmer optimization over y

At endemic equilibrium, we assume that σ−1 = d+ g, that b∗ is defined by setting (S17) equal to zero, and
that θ < θ̄b. Then,

∂π

∂y
=

σP (v + θσ)

β(1− y)2
− ab∗(y, θ) , (S23)

which we write as above to remind us that b∗ depends on y and θ. The second derivative is

∂2π

∂y2
=

2σP (v + θσ)

β(1− y)3
− a

∂b∗

∂y
> 0 . (S24)

Let y0 be the level of infection control at which the disease is eradicated. Because farmers are optimizing in
our model, y0 is not the usual 1− 1/R0 from epidemic models. In our model, y0 is the unique solution to

β · b∗(y, θ, P ) · (1− y)

σ(σ + v)
= 1 . (S25)

Hence y0 depends on θ, P , and a (and also on σ, v, and β as it usually does). y0 decreases with θ, and as θ
approaches θ̄b from below, y0 approaches zero from above. We have

∂y0
∂θ

=
1− y0
b∗

· ∂b
∗

∂θ
< 0 ,

and ∂2y0/∂θ
2 will be negative if r′′′ > 0. With this, we draw the region in the θ-y plane where the disease

persists and we divide it into regions where marginal profit from infection control is positive (π′ > 0) and
negative (π′ < 0); see Figure S1.

Below, we define two θ-thresholds, θ̄y1 and θ̄y2, that affect the boundary conditions of individual farmer
optimization over y.

Threshold value θ̄y1 : note that

∂π

∂y

∣∣∣∣
y=y0,θ=0

=
σP (σ + v)

β(1− y0)

(
1

1− y0

v

σ + v
− a

P

)
, (S26)

which indicates that if virulence is high enough, infection control can be incentivized even when θ = 0. To
understand the shape of the π′ > 0 region, we compute

∂

∂θ

(
∂π

∂y

∣∣∣∣
y=ỹ

)
=

σ2P

β(1− ỹ)2
− a

∂b∗

∂θ
(ỹ, θ) > 0 ,

for a fixed value ỹ. The above result combined with (S24) tells us that π′ increases in both θ and y. This tells
us that a single line in the y-θ plane divides π′ < 0 from π′ > 0, and equation (S26) gives us the condition
under which there exists a θ̄y1 defined by

∂π

∂y
< 0 ∀y ∈ [0, y0] when θ < θ̄y1 .

4



Figure S1: Marginal profit in the y-θ plane; π′ is ∂π/∂y. Inset in the second panel shows that the π′ = 0 line can
cross the y = y0 line multiple times, depending on the shape of the function r.

Since we do not know the exact shape of r, we cannot guarantee that above θ̄y1 we will always have a positive
π′ at y0; the inset in the second panel of Figure 1 shows a possibility for this diagram that we cannot exclude.

When θ < θ̄y1, we have π′ < 0 for all values of y and infection control cannot be incentivized.

Threshold value θ̄y2 : we show the existence and uniqueness of θ̄y2 which is defined as the θ-value above
which π′ is always positive. In other words,

∂π

∂y
= π′ > 0 ∀y ∈ [0, y0] when θ > θ̄y2 .

We have,
∂π

∂y

∣∣∣∣
y=0

=
σP (v + θσ)

β
− ab∗(0, θ) ,

which is zero when
a

P

β · b∗(0, θ)
σ(v + σ)

=
v + θσ

v + σ
, (S27)

and the left-hand side is seen to be (a/P ) ·R0, where R0 is calculated at the optimal b∗ when y = 0. The left
hand-side decreases monotonically with θ while the right-hand side increases monotonically with θ, which
guarantees a unique solution in θ̄y2 ∈ (0, 1) if and only if

v

v + σ
<

a

P
R0 .

Otherwise, π′ is always positive and θ̄y2 = 0.
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To determine the relative sizes of θ̄y2 and θ̄b when y = 0, we define the function g by g−1 = r′, and we plug
θ̄b into equation (S27) to obtain

aβ

σP (v + σ)
· g
(
(1− θ̄b)σP

v + σ

)
=

v + θ̄bσ

v + σ
.

The right-hand side above will be larger exactly when θ̄b > θ̄y2. This occurs when

aβ

σP (v + σ)
· g
(
r′
(
σ(v + σ)

β

))
<

v

v + σ
+

σ

v + σ

(
1− v + σ

σP
r′
(
σ(v + σ)

β

) )
,

which simplifies to
r′ + a < P , (S28)

where r′ is calculated at b0, the recruitment rate (or procurement rate) at which R0 = 1; this is equation
(4) in the main text. The above condition is the basic microeconomic requirement that the marginal cost of
eggs and the unit cost of infection control must not exceed the market price of a chicken or duck; otherwise,
poultry farming would not be profitable. We assume that condition (S28) is satisfied and thus θ̄b > θ̄y2.

Sensitivity of θ̄y2 to price : Let Q be the average price of sick poultry:

Q =
(1− θ)σP

v + σ
. (S29)

Then, we can write
∂b∗

∂P
=

g′(Q− ay)Q

P
and

∂b∗

∂Q
= g′(Q− ay) ,

which tells us that farm size (b∗) is more sensitive to Q than P , but the elacticites are identical and we
denote them by εb. Differentiating (S27) with respect to P , and collecting terms gives

∂θ̄y2
∂P

=
aβ(v + σ)

σP 2[ σ(v + σ) + aβ g′(Q) ]
· (Q g′(Q)− g(Q) )

=
(a/P )R0 (1− θ̄y2)

a R0 εb + Q
· ( εb − 1 ) .

The effect of price on θ̄y2 depends heavily on the current farm size and the diagnostic sensitivity θ. If θ is
high or if the farm size is already large, then εb will be less than one and θ̄y2 will decrease with increasing
price.

Optimization in the y-b plane. Because optimization over y always yields a boundary solution, optimiza-
tion in the y-b plane will either lead to a solution of complete infection control (CIC) or no infection control
(NIC). First consider the CIC solution located on the R0 = 1 line in the y-b plane (this is the upwards sloping
curve in Figure 2 of the main paper). This line can be parameterized by y using b(y) = σ(v+ σ)/(β(1− y)).
Then the profit on this curve is

π =
Pσ(v + σ)

β(1− y)
− r

(
σ(v + σ)

β(1− y)

)
− aσ(v + σ)y

β(1− y)
,

and
∂π

∂y
=

σ(v + σ)

β(1− y)2

[
P − a− r′

(
σ(v + σ)

β(1− y)

) ]
, (S30)
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which will have a single critical point defined by y∗0 . Thus,

y∗0
def
= 1 − σ(v + σ)

β g(P − a)
. (S31)

On the R0 = 1 line, π′ is positive at y = 0 assuming (S28), and π′ approaches negative infinity as y goes to
one. We have

∂2π

∂y2
=

σ(v+σ)

β(1− y)3

(
2[P − a− r′] − r′′

(
σ(v + σ)

β(1− y)

)
· σ(v + σ)

β(1− y)

)
,

which is negative at y∗0 since the expression in the square brackets is zero and r′′ > 0. Thus y∗0 and b∗0 are a
global profit optimum on the R0 = 1 line, and these points define the CIC solution.

The NIC solution is simply y = 0 and b∗ obtained from setting equation (S17) equal to zero.

Global optimization over y. When θ̄y1 < θ < θ̄y2, the system will have two local optima in y, one of
which will be globally optimal. A ‘globally optimizing’ farmer would choose the globally optimal solution.
The optimal farm size (procurement rate) at the CIC solution satisfies b∗0 = g(P − a), and the optimal farm
size at the NIC solution satisfies b∗ = g(Q), which gives us that b∗ > b∗0 exactly when Q > P − a. This
defines a threshold value for θ

θ̄π = 1−
(
1− a

P

) v + σ

σ
,

that determines whether farm size is larger at the CIC solution or at the NIC solution. It is easily shown
that that at θ = θ̄π, the farmer’s profit at the CIC solution is equal to his profit at the NIC solution. Because
π is monotonic in θ, it is easily seen that profit at the CIC solution is larger if and only if θ > θ̄π.

We can show that
∂π

∂y

∣∣∣∣
θ=θ̄π,y=y0

=
aσ(v + σ)

β(1− y0)

(
1

1− y0
− 1

)
> 0 ,

which means that θ̄π > θ̄y1. In addition, plugging θ̄π into (S27) shows that the right-hand side is smaller
whenever (S28) holds, which means that θ̄π < θ̄y2. Hence,

θ̄y1 < θ̄π < θ̄y2 .

1.4 Government optimization problem

In our analysis, the government has two tools at its disposal: culling and fining poultry sales. The parameter
δ is the fraction of ostensibly healthy poultry that the government procures/purchases from farmers for
the purpose of culling; it is assumed that all ostensibly sick poultry are culled. The parameter f is the
fine imposed on farmers for selling poultry during a period of culling. The amount of culling and the fine
affect the market price of poultry. We assume that ∂P/∂δ > 0 (culling lowers supply) and ∂P/∂f < 0 (fine
payments cut into profit from poultry sales).

The government will try to minimize its loss function which, from equation (5) of the main text, is

L(δ, f) = φ(1− δ)(1− θ)x̂s + C , (S32)

where C includes (i) the cost of purchasing poultry for culling, (ii) the cost of operationalizing culling for a
fraction δ of the poultry population, and (iii) the cost of implementing the fine f .

It can be seen that
∂L

∂θ
= −φ(1− δ)x̂s +

∂C

∂θ
< 0 , (S33)
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as long as dC/dθ is small relative to φ, which should always be the case.

The effect of a culling policy on government loss is

∂L

∂δ
= φ · b

∗(1− θ)

v + σ

[
1

b∗
∂b∗

∂δ
(1− δ) −

(
1− 1

R0

) ]
+

dC

dδ
, (S34)

which can also be written as

∂L

∂δ
= φ · b

∗(1− θ)

v + σ

[
εb

1

P

∂P

∂δ
(1− δ) −

(
1− 1

R0

) ]
+

dC

dδ
. (S35)

This gives us the comparison between the farm size elasticity and the endemic level of disease (1 − 1/R0).
Increasing δ and culling more poultry reduces the endemic level of disease, but it also increases price and
incentivizes farmers to raise more poultry. If we assume that the fractional change in price relative to culling
effort, (1/P ) · ∂P/∂δ, is constant, then the farm-size elasticity exhibits a threshold behavior and determines
whether government loss increases when culling is initiated (εb large) or decreases when culling is inititated
(εb small). As we cannot generalize across countries and markets about the price elasticity of poultry, we
assume without loss of generality that (1/P ) · ∂P/∂δ = 1, and then we have that εb = 1 is the threshold
that determines whether culling can be beneficial.

Figure 5 in the main paper shows a general schematic of different behaviors of the government loss function.
Note that depending on whether ∂P/∂δ is truly constant and on the amount of culling performed (δ) before
we arrive at R0 = 1, the loss of function may not necessarily be monotonic in f and δ.

2 Frequency-dependent model

In general, an epidemiological model will not always have the density dependence exhibited by model 1
(equations (S1) and (S2)). A frequency-dependent transmission model allows for a situation where the
poultry population may not be confined to a farm, such as a population of free-grazing ducks that scavenge
rice fields, or free-ranging chickens that live outdoors. In this scenario, doubling the flock size would not
increase the probability of infection for any particular susceptible individual, as the flock would be spread
over a larger area. The equations for a frequency-dependent transmission model are:

ẋh = b − β(1− y)
xhxs

xh + xs
− σxh (S36)

ẋs = β(1− y)
xhxs

xh + xs
− vxs − σxs , (S37)

The basic reproductive number in this model is

R0 =
β(1− y)

v + σ
,

and the endemic equilibrium is

x̂h =
b

β(1− y)− v
and x̂s =

b

v + σ
· β(1− y)− v − σ

β(1− y)− v
. (S38)

Following (S8), the profit function is

π(σ, b, y) =
Pb

g
(1− dσ)

(
θ + (1− θ)β(1−y)

v+σ

β(1− y)− v

)
− r(b) − aby .

It is easy to see from the profit equation above that profit always decreases with θ when R0 > 1.
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2.1 Individual farmer optimization over σ

Again, setting t = σ−1, it is easily shown that dπ/dt > 0, and that

d

dθ

(
dπ

dt

)
< 0.

Hence, σ∗ = 1/(d+g), and profit as a function of time-to-market looks the same as in Figure 1A of the main
paper.

2.2 Individual farmer optimization over b

Assuming σ−1 = d+ g, the profit equation can be written

π(σ, b, y) = Pbσ

(
θ + (1− θ)β(1−y)

v+σ

β(1− y)− v

)
− r(b) − aby ,

and differentiating with respect to b gives us a unique profit maximizing b∗ defined by

r′(b∗) =
Pσ

β(1− y)− v

(
θ + (1− θ)

β(1− y)

v + σ

)
− ay . (S39)

As in the density-dependent model, we have

∂b∗

∂P
> 0 and

∂b∗

∂θ
< 0 ,

but b∗ can go up or down with increases in infection control (y). Let A be the right-hand side of (S39). Then

∂b∗

∂y
= g′(A) ·

[
Pσβ

(β(1− y)− v)2
· v + θσ

v + σ
− a

]
. (S40)

The above equation defines thresholds in θ and a above which (θ) or below which (a) the optimal farm size
will increase with increased infection control. The θ-value above which ∂b∗/∂y becomes positive is

a

P

v + σ

β

(
β(1− y)− v

σ

)2

− v

σ
,

which at y = 0 is the same at the θ̄y2 threshold that we derive in the next section. If the farmer has complete
freedom to choose y, then the system will always be at the NIC or CIC solution, and the above threshold
will be crossed at the same time that θ̄y2 is crossed.

Note that in the frequency-dependent model, there is no θ̄b threshold since the flock size does not affect R0.

2.3 Individual farmer optimization over y

Differentiating profit with respect to y, we obtain

∂π

∂y
=

Pσbβ

(β(1− y)− v)2
· v + θσ

v + σ
− ab ,

and we have
∂2π

∂y2
> 0 .
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In the frequency-dependent model, the y-value at which R0 becomes one (y0) is explicitly defined as y0 =
1− (v + σ)/β. The thresholds θ̄y1, θ̄π, and θ̄y2 are defined as before, and they can be derived as

θ̄y1 =
a

P

v + σ

β
− v

σ
(S41)

θ̄π =
a

P

v + σ

β

(
β − ν

σ

)
− v

σ
= 1−

(
1− a

P
· β − v

β

)
v + σ

σ
(S42)

θ̄y2 =
a

P

v + σ

β

(
β − ν

σ

)2

− v

σ
(S43)

Above the threshold θ̄π both profit and farm size (b∗) become larger at the CIC solution. As long as R0 > 1,
we have

θ̄y1 < θ̄π < θ̄y2 .

2.4 Comparison between DD and FD models

Comparing the thresholds between the density- and frequency-dependent models, when β > v, we have

θ̄π,DD > θ̄π,FD and θ̄y2,DD > θ̄y2,FD . (S44)

Thus, it appears that it is easier to incentivize infection control under a scenario of frequency-dependent
infection. One reason for this is that at y = 0, the marginal profit from infection control (π′) is larger in
the FD model because in the DD model we are usually on a flatter part of the prevalence-R0 curve. Note
that (S44) assumes that all other parameters in the models are equal. However, the parameter a may differ
between the models as the nature of infection control will differ between contained farms and freely grazing
flocks.

We also have

b∗FD > b∗DD

b∗CIC,FD > b∗CIC,DD

∂b∗FD
∂P

>
∂b∗DD

∂P
> 0

∂b∗DD

∂κ
>

∂b∗FD
∂κ

> 0

∂b∗DD

∂θ
<

∂b∗FD
∂θ

< 0 .

This tells us that under frequency dependence, farms are larger and more sensitive to market price. This
makes sense when we consider that there is no disease-related cost arising from increasing the size of a
farm/flock under frequency-dependent transmission.

However, in the DD model, farm size is more sensitive to changes in the number of ostensibly infected birds
(through θ) and the price of infected birds (κ). As the power to detect infected birds goes down or as the
price of infected birds goes up, the DD-farmer gains more profit by increasing his farm size since b has a
disproportional effect on the infected birds in the DD model, while b has an equal effect on infected and
healthy birds in the FD model.
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Figure S2: The government loss function L(f, δ) in different economic and epidemiological scenarios. This is the
equivalent of Figure 5 from the main paper, but drawn for the FD model. Red areas indicate high loss, and blue
areas low loss. In the white regions, the system is at the disease-free equilibrium.

2.5 Government optimization problem

Starting with (S32), we have

∂L

∂θ
= φ · (1− δ)(R0 − 1)

β(1− y)− v

(
(1− θ)

∂b∗

∂θ
− b∗(θ)

)
+

∂C

∂θ
< 0 , (S45)

assuming changes in C are small relative to φ. We have

∂L

∂δ
= φ · b

∗(1− θ)(R0 − 1)

β(1− y)− v
·
[

1

b∗
∂b∗

∂δ
(1− δ) − 1

]
+

∂C

∂δ
, (S46)

which can also be written as

∂L

∂δ
= φ · b

∗(1− θ)(R0 − 1)

β(1− y)− v
·
[

εb
1

P

∂P

∂δ
(1− δ) − 1

]
+

∂C

∂δ
. (S47)

This is similar to equation (S35), except that the right-hand term in the square brackets above (“1”) does
not depend on R0. This means that under frequency dependence, the benefits of a culling policy are less
sensitive to the current R0. Again, assuming that (1/P ) ·∂P/∂δ is constant, and equal to one, εb = 1 defines
a threshold below (above) which culling is beneficial (detrimental).

Figure S2 shows a general schematic of different behaviors of the government loss function. Again, note that
depending on whether ∂P/∂δ is truly constant and on the amount of culling performed (δ) before we arrive
at R0 = 1, the loss of function may not necessarily be monotonic in f and δ. The left-hand panel will be
monotonic if (1/P ) · ∂P/∂δ = 1. The right-hand panel will look monotonic for an εb sufficiently larger than
one.
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3 Growth Function: sensitivity analysis

We perform a sensitivity analysis on the shape of the growth function for poultry in order to relax the
assumption that this function is piecewise linear. Here, we employ convex and concave growth functions –
as this will allow us to explore large deviations from piecewise linear growth – by adding a parameter q to
the original price function (S9):

P (σ−1) =


P
(

σ−1−d
g

)q
for d ≤ σ−1 ≤ g + d

P for σ−1 > g + d

0 for σ−1 < d ,

where d and g are the durations of the growth phases as before, and q is a concavity/convexity parameter
describing the growth process. For 0 < q < 1 growth is concave, and for q > 1 growth is convex. Growth
functions with very low q values are unrealistic, especially when the d value is also low; very high q values
are also unrealistic These cases are considered here simply as an exploration of the parameter space.

The general profit function for the density-dependent case is

π(t) = P

(
t− d

g

)q [
tv + θ

βt2(1− y)
− (1− θ)b

tv + 1

]
− r(b) − c(b, y) .

It can be readily seen that for d large enough or for θ low enough, the economically optimal behavior will
be to wait until poultry are fully grown before sending them to market. We consider the cases of low d and
high θ to determine if there are any parameter ranges for which sending poultry to market early can be
economically optimal. Assuming that d = 0, we have

∂π

∂t
=

P

gq

[
(q − 1)vtq + (q − 2)θtq−1

βt2(1− y)
+

b(1− θ)tq−1(tv(q − 1) + q)

(tv + 1)2

]
,

Figure S3: Profit as a function of t when poultry are sent to market (density-dependent model). Parameters are
d = 10, g = 60, θ = 1.0, β = 0.000688 (so that R0 = 5), y = 0, b = 2, v = 0.005, P = 1.
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and Figure S3 illustrates some scenarios when ∂π/∂t can be negative. Setting θ = 1, we see that a necessary
condition for the derivative ∂π/∂t to be negative is

q <
2 + vt

1 + vt
.

Hence, for all q ≥ 2, the optimum will be at t∗ = d+ g.

Figure S4 explores more fully the ranges when t∗ < d + g. In this figure, we have fixed d+ g = 70, and we
have chosen the other parameters to create the best conditions for the optimum t∗ to move below d+g; these
conditions are low R0, low v, low d, and high θ (unrealistic because θ and v are positively correlated). Figure
S4 shows weight (open circles) at which poultry should be sold to optimize profit, where the maximum weight
of a chicken or duck is set to 1.0. The blue lines in these panels show the relative benefit (profit-wise) of the
strategy of selling at full growth. This strategy gets less beneficial as q decreases, because for very concave
functions (low q) waiting for completely “full growth” yields little benefit since marginal growth rates are
slow for old chickens/ducks. Only the parameters in the bottom-right panel of Figure S4 are realistic, and
in this situation, selling poultry at below 70% full weight can be economically optimal only when q ≤ 0.5.

Under frequency-dependence, for all values of θ, v, β, and y, it is sufficient that

q > 1 − d

t
(S48)

for ∂π/∂t to be positive during the growth phase. Figure S5 shows parameter regions for which sending
poultry to market early can be economically optimal. Again, these conditions require high θ, low d, and
low q in ranges that are not realistic for smallholder poultry farming. Under both models, setting d ≤ 28 is
especially unrealistic as chicks and ducklings cannot be sold for meat earlier than four weeks.

13



Figure S4: Open circles show poultry weight if poultry are sent to market at an economically optimal rate; weight of
full grown bird is set to 1.0. The blue lines show the relative benefit of the strategy of selling full-grown poultry. As
an example, in the bottom-right panel, for q = 0.6, the economic optimum is to sell poultry when they have reached
approximately 85% of their full weight; however, waiting for full growth in this situation yields the same profit as the
profit function is nearly flat from 85% fully-grown to 100% fully-grown. Parameters are d + g = 70, β = 0.000688
(so that R0 = 5), y = 0, b = 2, v = 0.005, P = 1. For low d, low q, and high θ, the price function can have an
intermediate optimum in t. Analysis done for density-dependent model.
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Figure S5: Open circles show poultry weight if poultry are sent to market at an economically optimal rate; weight
of full grown bird is set to 1.0. The blue lines show the relative benefit of the strategy of selling full-grown poultry.
Parameters are d+ g = 70, β = 0.0963 (so that R0 = 5), y = 0, b = 2, v = 0.005, P = 1. For low d, low q, and high
θ, the price function can have an intermediate optimum in t. Analysis done for frequency-dependent model.

15


